

Гильманова Гузель Эльмировна

старший преподаватель

ФГБОУ ВО «Башкирский государственный аграрный университет» г. Уфа, Республика Башкортостан

ТЕХНОЛОГИИ И ИНСТРУМЕНТЫ ДЛЯ ПЛАНИРОВАНИЯ КАДАСТРОВЫХ РАБОТ

Аннотация: статья представляет обзор значимости современных технологий и инструментов в кадастровых работах. Рассматриваются ключевые технологии, такие как геоинформационные системы, дистанционное зондирование, автоматизированные системы учета данных, 3D-моделирование и дроны, их преимущества и вызовы. Приводятся примеры успешного применения новых методов в кадастровой деятельности. Обсуждаются перспективы развития сферы кадастровых работ с использованием инновационных инструментов.

Ключевые слова: ГИС, кадастровые работы, 3D-моделирование, геоданные, планировка территорий.

Современные технологии и инструменты играют ключевую роль в сфере кадастровых работ, обеспечивая более эффективное, точное и быстрое выполнение задач. Геоинформационные системы, дистанционное зондирование, автоматизированные системы учета данных, 3D моделирование, дроны и другие инновационные методы стали неотъемлемой частью процессов планирования и выполнения кадастровых работ [1].

Цель данной статьи состоит в обзоре значимости современных технологий и инструментов в кадастровых работах, а также в выявлении их преимуществ, вызовов и перспектив развития. Основные задачи статьи включают в себя анализ основных технологий, примеры успешного применения, обсуждение проблем и вызовов, а также представление перспективных направлений развития данной области с учетом использования новых инструментов.

Геоинформационные системы (ГИС) играют ключевую роль в планировании и выполнении кадастровых работ. Они позволяют эффективно управлять геоданными, проводить анализ пространственной информации, создавать картографические продукты и выполнять геоинформационное моделирование.

Дистанционное зондирование и спутниковая навигация предоставляют возможность получения данных о местоположении объектов на земле, а также об их характеристиках и состоянии издалека. Это позволяет ускорить процесс сбора информации для кадастровых целей и повысить точность данных (Таблица 1).

Таблица 1 Сравнительная характеристика основных характеристик современных беспилотных летательных аппаратов

	DJI MATRICE 300 RTK (Universal	МИ-2
Характеристики	Edition)	вертолет с верти-
	мультикоптер	кальной посадкой
Взлетная масса	Около 3,6 кг (без аккумуляторов),	3,66 т
	Около 6,3 кг (с двумя аккумулято-	
	рами ТВ60)	
Масса полезной нагрузки, кг	до 7 кг	800 кг
Размах крыла, м	$810 \times 670 \times 430$ мм	1,85 м
Длина, м	По диагонали (без пропеллеров)	11,94
	895 мм	
Скорость, км/ч	82,8 км/ч	191 км/ч
Высота полета, м	5000 м	4000 м
Радиус действия	2,4000–2,4835 ГГц	14,50 м
Продолжительность полета,	55 M	125 мин
мин		

Автоматизированные системы учета и анализа данных помогают обрабатывать большие объемы информации, проводить качественный анализ данных, уменьшить вероятность ошибок и повысить эффективность работы кадастровых служб [2].

3D моделирование и виртуальная реальность позволяют создавать трехмерные модели объектов недвижимости, территорий и инфраструктуры, что облегчает визуализацию и понимание пространственных данных, а также помогает в принятии решений при планировании различных проектов.

Методы дрона и аэросъемки становятся все более популярными в кадастровой деятельности. Дроны позволяют проводить быструю и качественную съемку территорий, получать высокоточные данные о местности, зданиях и объектах инфраструктуры, что упрощает проведение кадастровых работ и обеспечивает точность результатов.

Использование указанных технологий и инструментов при планировании кадастровых работ позволяет улучшить качество данных, повысить эффективность процессов сбора и анализа информации, сократить время выполнения работ и снизить затраты на проведение кадастровых операций (Таблица 1).

Таблица 2
Преимущества использования технологий и инструментов
в кадастровых работах

Метод	Описание метода	
Увеличение точности данных	Современные геоинформационные системы и специализированное программное обеспечение позволяют проводить точный анализ и обработку геоданных, что повышает качество и достоверность кадастровой информации	
Повышение эффективности данных	Автоматизация процессов сбора, обработки и анализа данных сокращает время выполнения кадастровых работ, что позволяет улучшить производительность и сократить затраты времени и ресурсов	
Улучшении доступности информации	Цифровые платформы и онлайн сервисы обеспечивают доступ к кадастровым данным для широкого круга пользователей, что способствует прозрачности и удобству использования информации	
Минимизация ошибок	Использование автоматизированных систем позволяет снизить вероятность человеческих ошибок при обработке данных, что способствует повышению качества и надежности кадастровых работ	
Интеграция данных	Технологии позволяют интегрировать данные из различных источников, что обеспечивает более полное и всестороннее представление о земельных участках и объектах недвижимости	
Улучшение взаимодействия	Использование технологий способствует более эффективному взаимодействию между участниками кадастрового процесса, таким образом улучшая координацию и согласование действий	

Применение современных технологий в кадастровых работах в России привело к значительным улучшениям в процессе планирования и выполнения работ. Многие организации в России активно используют геоинформационные системы (ГИС) для обработки и анализа геоданных. Например, Государственная корпорация «Росатом» применяет ГИС для управления своими земельными ресурсами, что позволяет эффективно планировать и контролировать использование земель. Внедрение электронного кадастра недвижимости в России позволило значительно упростить доступ к кадастровой информации и сократить время на получение различных документов. Это существенно улучшило процессы регистрации прав на недвижимость. В ряде проектов кадастровых работ в России успешно применяются дроны и спутниковые снимки для проведения обследований территорий, контроля за изменениями в землепользовании и обновления кадастровых карт. Внедрение специализированного программного обеспечения для автоматизации процессов сбора и обработки данных в кадастровых работах позволяет сократить время на выполнение задач, повысить точность данных и улучшить координацию между специалистами. Цифровизация процессов обработки документов, в том числе электронное подписание и передача документов, способствует ускорению процессов регистрации прав на недвижимость и снижению бюрократических барьеров [3].

Эти примеры показывают, как успешное применение современных технологий в кадастровых работах в России приводит к оптимизации процессов, повышению эффективности и качества работ, а также улучшению доступности и надежности кадастровой информации.

Вызовы и проблемы, с которыми специалисты сталкиваются при использовании технологий.

1. Необходимость постоянного обновления программного обеспечения. С появлением новых уязвимостей и требований к функциональности, специалисты вынуждены постоянно обновлять программное обеспечение, что требует дополнительных затрат времени и ресурсов.

- 2. Сложности в обучении персонала новым технологиям. Переход на новые технологии может вызывать сложности у персонала, требуя обучения и адаптации к новым процессам, что также может быть времязатратным и требовать финансовых вложений.
- 3. Защита данных и конфиденциальность информации: С повышением объема цифровых данных растет и риск утечек или кражи информации. Обеспечение адекватной защиты данных и конфиденциальности становится критически важным и требует постоянного мониторинга и обновления мер безопасности.

Перспективы развития технологий для планирования кадастровых работ включают в себя следующие аспекты. Наблюдается усиление тренда к интеграции различных источников геопространственных данных в единую платформу, что обеспечивает более полное и точное представление о территории. Внедрение облачных технологий позволяет увеличить доступность геоданных, обеспечивает более эффективное и безопасное хранение информации. Использование мобильных приложений в ГИС позволяет специалистам работать с данными на месте, улучшая мобильность и оперативность выполнения кадастровых работ [4].

Искусственный интеллект и методы машинного обучения могут помочь в обработке больших объемов геопространственных данных, что позволит выявлять закономерности, прогнозировать изменения и оптимизировать процессы планирования. Технологии компьютерного зрения позволяют автоматически анализировать и классифицировать геоданные, что ускоряет процессы обработки информации. Машинное обучение может помочь оптимизировать использование ресурсов, предсказывать спрос на недвижимость, анализировать тенденции развития территорий и принимать обоснованные решения в планировании кадастровых работ [5].

Объединение современных геоинформационных технологий с возможностями искусственного интеллекта и машинного обучения обещает значительное улучшение эффективности и точности проведения кадастровых работ, а также повышение скорости и инновационности процессов анализа и управления геопространственными данными. Заключения и выводы. В статье были рассмотрены текущие вызовы и проблемы, с которыми сталкиваются специалисты при использовании современных технологий, а также перспективы развития этих технологий для улучшения процессов кадастрового планирования.

Тенденции в развитии ГИС и других инструментов показывают рост интеграции данных и увеличение доступности информации. Применение искусственного интеллекта и машинного обучения обещает автоматизацию процессов, оптимизацию использования ресурсов и улучшение точности анализа геопространственных данных.

В целом, развитие технологий для планирования кадастровых работ направлено на повышение эффективности, точности и инновационности процессов работы специалистов в данной сфере. Необходимость постоянного обучения и адаптации к новым инструментам современной ГИС, вместе с использованием возможностей искусственного интеллекта, открывают новые перспективы для улучшения качества кадастровой деятельности и оптимизации процессов планирования на основе современных технологий.

Список литературы

- 1. Кутлияров А.Н. Территориальное планирование использования и охраны земельных ресурсов в Российской Федерации / А.Н. Кутлияров, Д.Н. Кутлияров, Л.Р. Загитова [и др.] // Землеустройство, кадастр и мониторинг земель. 2023. №1. С. 20—26. DOI 10.33920/sel-04-2301-03. EDN GUQHTO
- 2. Якупова Г.Ф. Экологическое прогнозирование и планирование как функция управления / Г.Ф. Якупова, Д.Н. Кутлияров, А.Н. Кутлияров // Наука молодых инновационному развитию АПК: материалы XI Национальной научнопрактической конференции молодых ученых / Башкирский государственный аграрный университет. 2018. С. 252—257. EDN ZQNMZF
- 3. Земельный кодекс Российской Федерации от 25.10.2001 №136-ФЗ (ред. от 03.04.2023). Ст. 77.

- 4. Варламов А.А. Земельный кадастр. В 6 т. Т. 1 Теоретические основы государственного земельного кадастра: учебник / А.А. Варламов. М.: КолосС, $2003.-383~\mathrm{c}.$
- 5. Варламов А.А. Земельный кадастр. В 6 т. Т. 5. Оценка земли и иной недвижимости: учебник / А.А. Варламов, А.В. Севостьянов. М.: КолосС, 2006. 265 с.