

Сивцев Кирилл Гаврильевич

магистрант

Научный руководитель

Журавлева Оксана Вадимовна

магистр техн. наук, старший преподаватель ФГАОУ ВО «Дальневосточный федеральный университет» г. Владивосток, Приморский край

ОЦЕНКА СОСТОЯНИЯ ОКРУЖАЮЩЕЙ СРЕДЫ Г. ЯКУТСКА ПО УРОВНЮ ЗАГРЯЗНЕНИЯ ПОЧВ ТЯЖЁЛЫМИ МЕТАЛЛАМИ

Аннотация: в статье отражены методы и результаты анализа почв г. Якутска на физико-химические характеристики, содержание кислоторастворимых форм тяжёлых металлов и проведена гигиеническая оценка загрязнения почв.

Ключевые слова: тяжёлые металлы, почва, гигиеническая оценка почв, суммарный показатель загрязнения Zc.

В Якутском городском округе расположены промышленные, сельскохозяйственные, жилищно-коммунальные и топливно-энергетические предприятия, что обусловливает высокую степень антропогенной нагрузки. По данным Федеральной службы государственной статистики, в г. Якутске проживает 1/3 населения Якутии (около 300 тысяч человек), в том числе работоспособное и подрастающее поколение, поэтому оценка качества среды имеет важное значение в обеспечении поддержания здоровья жителей.

Было выбрано 9 точек в городе (рисунок 1). Размер площадок 10 x 10 м, отбор осуществлялся по методу конверта.

Измерение содержания кислоторастворимых форм тяжёлых металлов проводилось с помощью атомно-абсорбционного анализа, с экстракцией пятимолярной азотной кислотой (HNO₃) [4].

Определение содержания органических веществ проводилось с помощью мокрого сжигания по Тюрину, в зависимости от окраски почвы после титрования 0,2 н соли Мора.



Рис. 1. Расположение точек отбора почвы

Гранулометрический состав определялся для нахождения величины ориентировочно допустимых концентраций (ОДК) [2].

Для определения кислотности измерялось pH водной и солевой суспензии [7].

Для оценки полиэлементной токсикации используется коэффициент Zc, т. к. он является более информативным, учитывая совместное действие загрязнителей. Расчет производился по следующей формуле:

$$Zc = \sum_{i=1}^{n} Kci - (n-1), (1)$$

где Kci – коэффициент концентрации металла (отношение содержания металла в почве к фоновому содержанию);

n – число определяемых ингредиентов [5].

За фоновые значения использовались результаты, полученные при исследовании незагрязненных территорий за границами города [1].

В результате проведенных измерений и расчетов были получены следующие результаты (таблица 1). Реакция почвенного покрова (рН) во всех анализируемых пробах характеризуется, как близкая к нейтральной и слабощелочной. По содержанию органического вещества большинство станций имеют градацию — очень низкое, только в парковой зоне почва со средней концентрацией гумуса. Почти на всех станциях типы почвы — супесчаный, кроме парковой территории — легкий суглинок.

Таблица 1 Физико-химические свойства почв

Станция	рН водной	рН солевой	Сорг., %	Содержание гумуса (Гришина, 1978)	Тип почвы
1. Птицефабрика	7,8	7,7	2,3	Низкое	Супесь
2. ДСК	7,8	7,7	0,9	Очень низкое	Супесь
3. Гимеин	7,9	7,8	0,9	Очень низкое	Супесь
4. Ленина	7,8	7,6	3,3	Низкое	Супесь
5. Парк	7,9	7,4	4,7	Среднее	Легкий суглинок
6. ТЭЦ	7,9	7,4	3,7	Низкое	Супесь
7. Халтурина	7,6	7,7	2,4	Низкое	Супесь
8. ГРЭС	7,9	7,8	0,3	Очень низкое	Супесь
9. Аэропорт	7,8	7,5	3,4	Низкое	Супесь

Уровни содержания Мп, Сu, Ni, Cd, Pb в почвах г. Якутск не превышали ПДК (ОДК) (таблица 2). Выявлено превышение ПДК по Zn в 1-2,8 раза на разных станциях. По оценкам других исследователей, для подвижных форм цинка на территории города также характерна сплошная техногенная цинковая аномалия, со средним содержанием в грунтах -30,1 мг/кг (при ПДК=23 мг/кг), с высокой частотой встречаемости Hi=55,0% [6].

Таблица 2 Содержание кислоторастворимых форм микроэлементов в почвах (мг/кг)

Станция —	Элемент и класс опасности						
	Zn(I)	Pb (I)	<i>Cd</i> (<i>I</i>)	Ni (II)	Cu (II)	Mn (III)	Fe(-)
1. Птицефабрика	68,2	16,7	0,1	5,8	5,1	101,3	4818,2
2. ДСК	51,1	11,2	<	6,7	3,6	58,1	5020,6
3. Гимеин	101,4	5,5	<	8,1	7,4	161,6	5545,0
4. Ленина	65,5	0,8	<	7,8	5,6	106,2	2430,9
Парк*	95,3	20,4	<	13,7	9,7	337,8	7949,1
6. ТЭЦ	70,2	26,4	<	7,7	11,7	157,6	3210,4
7. Халтурина	74,2	16,4	<	7,5	5,8	188,4	3236,5
8. ГРЭС	26,1	0,2	<	5,0	1,0	13,0	471,8
9. Аэропорт	157,4	12,2	<	7,2	6,5	150,8	5877,0
Фон	21	10	0	2,2	1,8	6,8	3099
ПДК	-	32,0	_	-	-	1500,0	-
ОДК*	55 / 220	-	0,5 / 2	20 / 80	33 / 132	-	-

Примечания: * суглинистый тип почвы; ОДК для песчаных и супесчаных грунтов в числителе, для суглинков — в знаменателе; < содержание элемента ниже предела обнаружения.

По суммарному показателю загрязнение почв (Zc) (таблица 3) территория города принадлежит к категории «умеренно опасная», при которой возможно увеличение общей заболеваемости среди населения. Наибольший вклад в показатель Zc внесли: Mn, Zn, Cu, Ni. По результатам эколого-геохимического мониторинга окружающей среды, который проводится ИМЗ СО РАН с 1982 года, коэффициент Zc для 86% почв г. Якутска также соответствует качеству среды «умеренно опасная» [3].

Таблица 3 Суммарный показатель загрязнения почвы (Zc)

Станция	Zc относительно локальных C_{ϕ}	Качество среды	Zc образующие элементы относительно локального фона
1. Птицефабрика	22	Умеренно опасная	$Mn_{15} \rightarrow Zn_{3,1} \rightarrow Cu_{2,8}$
2. ДСК	14	Допустимая	$Mn_{8,4} \rightarrow Ni_3 \rightarrow Zn_{2,3}$
3. Гимеин	34	Умеренно опасная	$Mn_{23} \rightarrow Zn_{4,6} \rightarrow Cu_{4,1}$

⁴ https://phsreda.com

4. Ленина	23	Умеренно опасная	$Mn_{15,4} \rightarrow Ni_{3,5} \rightarrow Cu_{3,1}$
5. Парк	64	Опасная	$Mn_{49} \rightarrow Ni_{6,1} \rightarrow Cu_{5,4}$
6. ТЭЦ	35	Умеренно опасная	$Mn_{23} \rightarrow Cu_{6,5} \rightarrow Ni3,4$
7. Халтурина	35	Умеренно опасная	$Mn_{27,3} \rightarrow Ni_{3,4}; Zn_{3,4}$
8. ГРЭС	3	Допустимая	$Ni_{2,2} \rightarrow Mn_{1,9} \rightarrow Zn_{1,2}$
9. Аэропорт	34	Умеренно опасная	$Mn_{21,9} \rightarrow Zn_{7,2} \rightarrow Cu_{3,6}$
Z с город	29	Умеренно опасная	$Mn_{20,5} \rightarrow Zn_{3,6} \rightarrow Cu_{3,5}, Ni_{3,5}$

Список литературы

- 1. Водяницкий Ю.Н. Формулы оценки суммарного загрязнения почв тяжелыми металлами и металлоидами / Ю.Н. Водяницкий // Почвоведение. 2010. №10. С. 1276–1280.
- 2. Качинский Н.А. Механический и микроагрегатный состав почвы, методы его изучения / Н.А. Качинский; АН СССР. М., 1958. С. 193.
- 3. Макаров В.Н. Экогеохимия окружающей среды города, расположенного в криолитозоне (на примере Якутска) / В.Н. Макаров // Региональная экология. 2016. №4. С. 80–94.
- 4. Методические указания. Методика выполнения измерений массовой доли кислоторастворимых форм: металлов (меди, свинца, цинка, никеля, кадмия) в пробах почвы атомно-абсорбционным анализом. М., 1990. С. 32.
- 5. Сает Ю.Е. Геохимия окружающей среды / Ю.Е. Сает, Б.А. Ревич, Е.П. Янин. М.: Недра, 1990. 335 с.
- 6. Сивцева Н.Е. Экологическая оценка состояния территории г. Якутска по суммарному показателю загрязнения почвенного покрова / Н.Е. Сивцева, Я.Б. Легостаева, В.С. Макарова, Н.Ф. Васильев // Вестник Северо-Восточного федерального университета им. М.К. Аммосова. 2011. Т. 8, №2. С. 30–35.
- 7. Теория и практика химического анализа почв / под ред. Л.А. Воробьевой. М.: ГЕОС, 2006. 400 с.