

Ефимов Илья Алексеевич

студент

ФГБОУ ВО «Иркутский национальный исследовательский технический университет» г. Иркутск, Иркутская область

РАЗРАБОТКА АППАРАТНО-ПРОГРАММНО-МЕТОДИЧЕСКОГО КОМПЛЕКСА ДЛЯ СРЕДНИХ ОБЩЕОБРАЗОВАТЕЛЬНЫХ ШКОЛ

Аннотация: в статье рассмотрены проблемы, связанные с технологией получения отверстий повышенной точности в алюминиевых сплавах при обработке на фрезерных станках с ЧПУ пониженной жесткости.

Ключевые слова: технология обработки алюминия, фрезерная обработка на станках с ЧПУ, повышение точности обработки отверстий в алюминиевых сплавах.

Введение

К современному образовательному процессу в средних школах предъявляется большое количество требований со стороны высших учебных заведений. Одна из основных проблем возникающая у абитуриентов при поступлении в технический вуз, это незнание элементарной материальной-технической базы с которой предстоит работать, в случаи машиностроительных специальностей это отсутствие знаний о станочной базе и о системах с числовым программным управление. В связи с этим у большинства студентов при знакомстве с системами с ЧПУ, возникает много вопрос по работе данных систем, на которые преподаватель не всегда может ответить в связи с ограниченностью времени проведения занятия.

Целью данной научно работы является разработка аппаратно-программнометодического комплекса для среднеобразовательных школ. В рамках работы были разработаны следующие компоненты комплекса:

1. Настольный фрезерный станок с ЧПУ для общеобразовательных школ.

- 2. Проведен анализ и выбраны программные продукты, которые подходят для внедрения образовательный процесс.
- 3. Разработаны методические рекомендации по организации и проведению занятий на разработанном оборудовании.
 - 1. Проектирование и разработка настольного фрезерного станка с ЧПУ

При проведении работ была в программе по 3D моделированию была разработана 3Д модель фрезерного станка. Использование 3Д моделирования позволило учесть большинство моментов при проектирвоани и избежать ошибок про изготовление и сборки, а также учесть особенности эксплуатации такого станка в школах.

В результате выполнения проекта, был разработан фрезерный станок с ЧПУ с рабочей зоной 300 на 300 мм. В конструкции станка использовались широкодоступные материалы из бывшей в употреблении офисной технике (рисунок 1, рисунок 2), двигателя, направляющие, ремни, блоки электроники (рисунок 3), что позволило сделать стоимость станка минимальной.

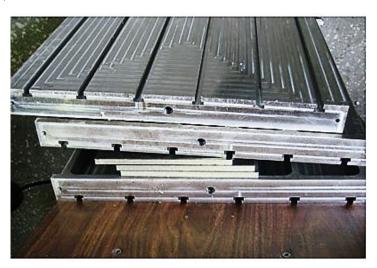


Рис. 1. Стол для фрезерного станка

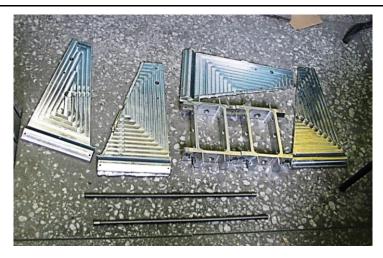


Рис. 2. Боковые стенки и направляющие для фрезерного портала

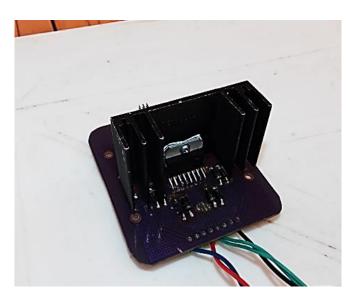


Рис. 3. Драйвер шагового двигателя, из старой микросхемы от принтера

2. Проектирование системы управления

При проектировании и изготовлении системы управления учитывалось, что на нем будут обучаться дети, поэтому должно быть исключена возможность доступа в рабочую зону станка при его работе, для этих целей был спроектирован и изготовлен прозрачный кожух, снабженный 3-мя концевыми датчиками безопасности (рисунок 4), который полностью позволили исключить доступ человека в зону обработке, при рабочем станке.

Рис. 4. Станок в сборе с защитным кожухом и аварийными выключателями

3. Выбор программных продуктов

В результате анализа существующий CAD/CAM программ для работы со станком и удешевления стоимость комплекта оборудования было принято решение использовать FreeCAD (рисунок 5) для моделирования и Minos CAD для генерации управляющего кода. В качестве программы транслятора G-кодов используется Lunex-CNC.

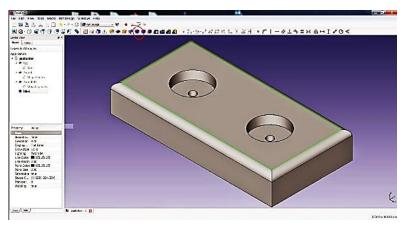


Рис. 5. Программа для 3моделирования FreeCad

4. Разработка методических рекомендаций

При разработке методических рекомендации по работе на станке, автор полагался на личный опыт полученный при обучении школьников работе на станке (рисунок 6, 7), а также использовал различную педагогическую литературу для обучения детей техническому творчеству. На разработанные автором методические указания была подана заявка на получение авторского свидетельства.

Рис. 6. Подготовка станка к занятиям

Рис. 7. Занятия с детьми по работе на фрезерном станке с ЧПУ

Заключение

В результате реализации проекта с 2014 по 2018 год были завершены разработки программно-аппаратной части и пробных методических рекомендации. Проект был внедрен в образовательное учреждение лицей ИГУ При обучении школьников работе на данном станке было доработано методическое указание по работе на станке и подобран пакет программного обеспечения наиболее удобный для освоения школьников. Первый образец станке передан на опытный эксплуатацию в одно из образовательный учреждений города Иркутска Лицей ИГУ. Школьникам данного учебного учреждения был прочитан курс лекции и проведены курсы обучения по работе на станке и работе в САD/САМ программах

После получения успешного результата исследований и отзыва от ученого заведения, начато штучное производство данного вида оборудования и методические указаний. Данная научно-исследовательская работы выполнена по программе УМНИК Фонда содействия инноваций.

Список литературы

- 1. Романина В.И. Дидактический материал по трудовому обучению: Пособие для учащихся 3 класса. 1991.
- 2. Ловыгин А.А. Современный станок с ЧПУ и CAD_CAM / А.А. Ловыгин, А.В. Васильев, С.Ю. Кривцов.
- 3. Гурьянихин В.Ф. Проектирование технологических операций обработки заготовок на станках с ЧПУ / В.Ф. Гурьянихин, В.Н. Агафонов.
- 4. Сурина Е.С. Разработка управляющих программ для системы ЧПУ: Учебное пособие / Е.С. Сурина. СПб.: Лань, 2018. 268 с.
- 5. Балла О.М. Инструментообеспечение современных станков с ЧПУ: Учебное пособие / О.М. Балла. СПб.: Лань, 2017. 200 с.
- 6. Ловыгин А.А. Современный станок с ЧПУ и CAD/CAM-система / А.А. Ловыгин, Л.В. Теверовский. полноцв. 4-е изд. М.: ДМК Пресс, 2015. 278 с.
- 7. Гукасова А.М. Рукоделие в начальных классах: Книга для учителя по внеклассной работе. — 1984.