

Соловьев Алексей Вячеславович

канд. биол. наук, заместитель директора, старший научный сотрудник, доцент

Научно-исследовательский центр фундаментальных и прикладных проблем биоэкологии и биотехнологии ФГБОУ ВО «Ульяновский государственный педагогический университет им. И.Н. Ульянова»

Пятаева Юлия Андреевна

магистрант

ФГБОУ ВО «Ульяновский государственный педагогический университет им. И.Н. Ульянова»

Баранов Александр Валерьевич

бакалавр биол. наук, младший научный сотрудник Научно-исследовательский центр фундаментальных и прикладных проблем биоэкологии и биотехнологии ФГБОУ ВО «Ульяновский государственный педагогический университет им. И.Н. Ульянова» Хамбикова Анастасия Владимировна

бакалавр биол. наук, младший научный сотрудник Научно-исследовательский центр фундаментальных и прикладных проблем биоэкологии и биотехнологии ФГБОУ ВО «Ульяновский государственный педагогический университет им. И.Н. Ульянова» г. Ульяновск, Ульяновская область

МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКАЯ ДИФФЕРЕНЦИАЦИЯ ПОДТИПОВ ГЕРПЕСА HHV-6

Аннотация: в работе проведен биоинформационный анализ геномов вируса 6-го типа с целью выявления участков, которые могут быть использованы для молекулярно-генетической диагностики подтипов А и В. В качестве таргетного для диагностики участка выбран фрагмент гена U31. Разработана молекулярно-генетическая система на основе полимеразной цепной реакции в режиме «реального времени», а также проведена ее апробация.

Ключевые слова: вирус герпеса человека 6 типа (ВГЧ-6, ННV-6), подтипы А и В (ННV-6A, ННV-6B), ПЦР-РВ, ген U31, большой тегументный белок.

Вирус герпеса 6-го типа (*Humanherpesvirus* HHV-6) — это ДНК-содержащий вирус семейства Herpesviridae подсемейства Betaherpesvirinae рода *Roseolovirus*. Вирус включает два подтипа: HHV-6A и HHV-6B, однако в 2012 году на основе генетических и фенотипических исследований Международный комитет по вирусной таксономии было предложено рассматривать подтипы как различные вирусы.

Оба вируса создают пожизненную латентность после первичной инфекции, а в дальнейшем появляется значительный риск для пациентов с ослабленным иммунитетом. Основной путь заражения — воздушно-капельный, со слюной и мокротой. Также инфицирование возможно при гемотрансфузиях, трансплантации органов и через медицинские инструменты [1]. В большинстве случаев болезнь протекает без ярко выраженных симптомов, проявление экзантемы на кожных покровах часто путают с симптомами кори или краснухи, что приводит к постановке ошибочного диагноза. В дальнейшем это вызывает осложнения со стороны центральной нервной системы: судороги на фоне высокой температуры, энцефалит, менингоэнцефалит, серозный менингит [12]. Доказано, что ННV-6 может также выступать в качестве кофактора ВИЧ.

Вирус проявляет тропизм к широкому спектру клеток хозяина: его можно обнаружить в лимфоцитах периферической крови, моноцитах, макрофагах, лимфатических узлах, клетках почек, в слюнных железах, мозге [3]. И только в момент острой инфекции возбудитель может быть выделен из клеток крови. Данная инфекция отличается всеобщей восприимчивостью.

В отличие от других герпесвирусов человека, вирусный геном HHV-6 может быть интегрирован в хромосомы человека [2; 9]. Когда интеграция происхо-

дит в зародышевых клетках, интегрированный геном HHV-6 может передаваться 50% потомков. Герпесвирусы 6A и 6B человека, наряду с некоторыми другими герпесвирусами, способны также интегрироваться в теломеры хромосом.

ННV-6В является повсеместным, тогда как распространенность ННV-6А менее четко определена, хотя существуют географические особенности в его распределении. В целом, в популяциях людей вирус ННV-6В диагностируется чаще, чем ННV-6А. Хотя геномы вирусов характеризуются достаточной высокой степенью идентичности, оба вируса имеют различающиеся эпидемиологические, биологические и иммунологические характеристики [6; 10; 11].

К настоящему времени разработаны и широко используются в практике медицинских организаций диагностические тест-системы по ПЦР-диагностике вируса 6-го типа. Вместе с тем существует необходимость развития подходов к дифференциальной диагностике подтипов герпеса 6-го типа, чему и посвящено настоящее исследование. Следует отметить, что ранее проводились исследования по разработке тест-систем по диагностике подтипов [5, 8], однако сохраняется необходимость повышения их специфичности и чувствительности.

Биоинформационные данные для анализа были заимствованы из базы данных GenBank Национального центра биотехнологической информации (https://www.ncbi.nlm.nih.gov/genbank). Анализ нуклеотидных и аминокислотных последовательностей проводился в программах MEGA 10 (https://www.megaso-ftware.net/) и Unipro UGENE (http://ugene.net).

Геном вируса HHV-6A включает 159322 п.н. (на основе референсной последовательности из GenBank NC_001664), состав GC: 28,2666%; геном HHV-6B – 162114 п.н. (на основе референсной последовательности из GenBank NC_000898), состав GC: 42,8%. Нуклеотидные последовательности геномов обоих подтипов имеют 145631 идентичных сайта, что составляет 92,2%; попарная дистанция – 0,083 [7].

Относительно невысокая степень молекулярно-генетической идентичности обоих вирусов свидетельствует о возможности успешной их молекулярно-генетической дифференциации.

Геномы подтипов содержат 97 генов [4]. В качестве кандидатного гена для диагностики подтипов выбран ген *U31*, кодирующий большой тегументный белок – белок покровов герпесвируса, N-концевой консервативный регион. Кодирующая часть гена имеет длину 6234 п.н. (2077 аминокислоты). Среди генов остальных изученных клинически значимых типов герпесов наибольшей гомологией к изучаемому обладает ген *U31* у HHV-7. Тем не менее, степень гомологии является очень слабой и попарные дистанции при анализе нуклеотидов между HHV-7 подтипами HHV-6 составляют 0,4147 (для HHV-6A) и 0,4138 (для HHV-6B), при анализе аминокислотных последовательностей – 0,6525 и 0,6492, соответственно.

Для анализа молекулярно-генетического полиморфизма гена *U31* у HHV-6 были взяты нуклеотидные последовательности гена *U31* со следующими идентификационными номерами GenBank по подтипу А: KY316056, KY316054, KY316049, KY316048, KC465951, NC_001664, MG894374, MG894371, X83413, MG894370, KJ123690, KT355575, KP257584, KT895199; по подтипу В: NC_000898, AF157706, AB021506, KY316052, KY316051, KY316053, KY316041, KY316045, KY316038, KY316043, KY316042, KY316036, KY316040, KY316037.

Изученные последовательности HHV-6A содержат 98 сайтов вариабельных нуклеотидов (1,6%), попарная дистанция — 0,005429, а также 21 сайт вариабельных аминокислот (1,0%). Нуклеотидные последовательности HHV-6B отличаются 38-ю нуклеотидами (0,6%), попарная дистанция — 0,001158, аминокислотные последовательности — 21-й аминокислотой (1,8%), попарная дистанция — 0,001157. Таким образом, молекулярно-генетический полиморфизм гена *U31* внутри каждого подтипа герпеса 6-го типа относительно невысокий. При этом разные подтипы демонстрируют более сильные различия. Так, разные https://phsreda.com

подтипы имеют 406 различающихся нуклеотидных сайтов (6,5%), попарная дистанция — 0,0527, а также отличные 174 аминокислоты (8,4%), попарная дистанция — 0,0517.

В результате анализа консенсусных нуклеотидных последовательностей гена *U31* обоих подтипов, выбран регион, стабильно отличающийся у разных подтипов 5-ю нуклеотидами и 2-мя аминокислотными остатками, и поэтому пригодный для дифференциации подтипов. Регион соответствует сайтам 3037—3066 кодирующей части гена. Под этот регион были сконструированы ДНК-зонды и праймеры (таблица 1). При конструировании праймеров и зондов производилась проверка их последовательностей на формирование стабильных вторичных структур в виде шпилек и димеров с помощью программного обеспечения OligoAnalyzer (*https://eu.idtdna.com/calc/analyzer*).

В состав ДНК-зондов включены модифицированные LNA-нуклеотиды, повышающие температуру плавления и поэтому повышающие и специфичность гибридизации зондов. Расчетная температура плавления ДНК-зондов — 69°С. ДНК-зонды несут различные флуоресцентные метки, что делает возможным их использование для мультиплексной ПЦР-РВ.

ДНК-зонд для выявления HHV-6A:

FAM-A+AGATAAC+AAT+GTCATC+ATTC+ACTT+TAC+C-BHQ1.

ДНК-зонд для выявления HHV-6B:

ROX-CA+GGATAAC+GAT+CTCATCATTCACTT+C-BHQ2.

Знак «+», находящийся перед нуклеотидом, означает LNA-нуклеотид.

Для целей верификации результатов тест-системы проведен дизайн контрольных оцДНК, которые соответствуют таргетным участкам геномной ДНК подтипов, соответствующие сайтам 2999—3087 кодирующей части гена.

Таблица 1 Фрагмент нуклеотидной последовательности гена с соответствующими аминокислотами гена U31 подтипов герпеса 6-го типа

№ сай- та	2998	2999	3000	3001	3002	3003	3004	3005	3006	3007	3008	3009	3010	3011	3012	3013	3014	3015	3016	3017	3018	3019	3020	3021	3022	3023	3024	3025	3026	3027
HHV- 6A	A	T <i>M</i>	G	С	A H	Т	T	T L	G	A	A N	T	С	T L	Т	Т	T L	A	G	A E	A	A	C T	С	Т	T F	T	С	T L	\boldsymbol{G}
HHV- 6B	G	T <i>V</i>	G	С	A H	Т	T	T L	G	A	A N	T	С	T L	Т	Т	T L	A	G	A E	A	A	C T	С	Т	T F	Т	С	T L	\boldsymbol{A}
№ сайта	3028	3029	3030	3031	3032	3033	3034	3035	3036	3037	3038	3039	3040	3041	3042	3043	3044	3045	3046	3047	3048	3049	3050	3051	3052	3053	3054	3055	3056	3057
HHV- 6A	A	A K	A	С	A Q	A	<i>C</i>	T L	G	С	A Q	A	G	A D	T	A	A N	С	A	A N	Т	G	T <i>V</i>	С	A	T I	С	A	T I	T
HHV- 6B	A	A K	A	С	A Q	A	Y	T L	G	С	A Q	G	G	A D	T	A	A N	С	G	А D	Т	C	Т <i>L</i>	С	A	T I	С	A	T I	T
№ сайта	3058	3059	3060	3061	3062	3063	3064	3065	3066	3067	3068	3069	3070	3071	3072	3073	3074	3075	3076	3077	3078	3079	3080	3081	3082	3083	3084	3085	3086	3087
HHV- 6A	С	A H	С	Т	T F	T	A	C T	C	С	A H	Т	G	C A	A	C	T L	A	С	T L	G	С	C P	A	G	T V	G	Т	T L	A
HHV- 6B	С	A H	С	Т	T F	C	A	C T	T	С	A H	T	G	C A	A	С	T L	A	С	T L	G	С	C P	A	G	T V	G	Т	T L	A

Примечание: в таблице указаны номера нуклеотидов открытой рамки считывания гена U31; отличающиеся нуклеотиды и аминокислоты показаны курсивом; серой заливкой показаны праймеры, серой заливкой в рамке — зонды.

С целью апробации тест-системы проводилась постановка реакций с разной концентрацией матрицы (2, 10 и 100 копий в 1 мкл). Объем реакционной смеси – 25 мкл; состав: вода, 5х реакционная смесь qPCRmix-HS (Евроген), концентрация праймеров и зондов – по 0,5 мкМ, 5 мкл контрольной матрицы (положительный контроль для подтипа A или B).

Полимеразная цепная реакция проводилась с использованием детектирующего амплификатора qTower 2.2 (Analytik Jena, Германия). Параметры амплификации: (1) 95° C – 5 мин.; (2) 95° C – 10 c, (3) 55° C – 10 c, (4) 72° C – 15 c; повторение 45 раз этапов 2 – 4. Детекция уровней флуоресценции проводилась на этапе отжига праймеров каждого цикла по каналам FAM и ROX.

6 https://phsreda.com

Реакционные смеси, содержащие контрольную оцДНК подтипа A с концентрацией 2 копии на 1 мкл, имеют типичную S-образную форму, пороговое значение цикла (Ct) – 21,19 (канал FAM), а для подтипа B – 20,12 (канал ROX) (рисунок 1). При использовании контрольной оцДНК с концентрацией 10 копий в 1 мкл, пороговые значения цикла – 24,05 и 21,04, а при концентрации 100 копий в 1 мкл – 14,56 и 13,90. Все значения получены при значении threshold – 1.

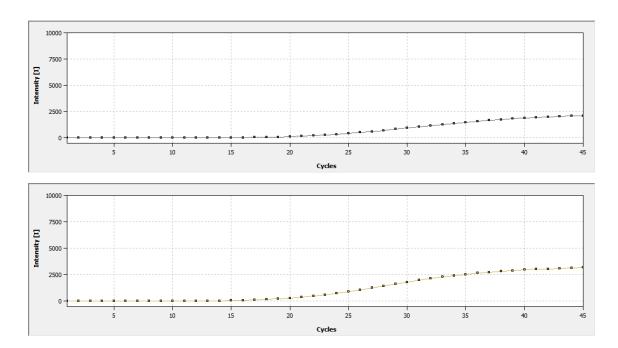


Рис. 1. Детекция по каналам FAM (наверху) и ROX (внизу). Концентрация контрольной оцДНК 2 копии/мкл.

Таким образом, в ходе апробации разработанная мультиплексная тестсистема показала высокую эффективность при выявлении контрольной ДНК подтипов герпеса 6-го типа. При этом аналитическая чувствительность — 10 копий контрольной ДНК на реакцию.

Следует отметить, что требуется дальнейшая апробация тест-система на клиническом материале, а также продолжение исследований с целью возможности постановки количественной ПЦР для определения вирусной нагрузки. Проблема, которую также предстоит решить в процессе модернизации тест-системы – выявление хромосомной интеграции HHV-6, при этом вирус нахо-

дится в латентном состоянии, а также учет при интерпретации результатов встраивания HHV-6 в клетки зародышевой линии.

Список литературы

- 1. Никольский М.А. Инфекция, вызванная вирусом герпеса человека 6 типа, у детей: современное состояние проблем // Российский вестник перинатологии и педиатрии. 2008. №2. С. 93–97.
- 2. Никольский М.А. Хромосомно-интегрированный вирус герпеса 6 типа / М.А. Никольский, В.С. Голубцова // Инфекция и иммунитет. 2015. Т. 5. №1. С. 7—14.
- 3. Chan P.K. Prevalence discribution of human herpesvirus 6 variants A and B in adult human brain / P.K. Chan, H.K. Ng, M. Hui, A.F. Cheng // Journal of Medical Virology. -2004. $-N_{\odot}64$. -P. 42-46.
- 4. Dominguez, G. Human herpesvirus 6B genome sequence: coding content and comparison with human herpesvirus 6A / G. Dominguez, T.R. Dambaugh, F.R. Stamey, S. Dewhurst, N. Inoue, P.E. Pellett // Journal of Virology. 1999. Vol. 73 (10). P. 8040–8052.
- 5. Ihira, M. Development of real-time RT-PCR assays for detection of three classes of HHV-6A gene transcripts / M. Ihira, A. Urashima, H. Miura, F. Hattori, Y. Kawamura, K. Sugata, T. Yoshikawa // Journal of Medical Virology. 2017. doi: 10.1002 / jmv.24862
- 6. Komaroff A.L. Summary of the 10th International Conference on Human Herpesviruses-6 and -7 (HHV-6A, -6B, and HHV-7) / A.L. Komaroff, M. Boeckh, E. Eliason, T. Phan, B.B. Kaufer // Journal of Medical Virology. 2018. Vol. 90 (4). P. 625–630. doi: 10.1002/jmv.25004
- 7. Nei M. Molecular Evolution and Phylogenetics / M. Nei, S. Kumar. Oxford University Press, 2000. 333 p.
- 8. Reddy S. Quantitative Detection and Differentiation of Human Herpesvirus 6 Subtypes in Bone Marrow Transplant Patients by Using a Single Real-Time Poly-

merase Chain Reaction Assay/ S. Reddy, P. Manna // Biology of Blood and Marrow Transplantation. – 2005. – Vol. 11. – P. 530–541.

- 9. Wood, M.L. Chromosomally Integrated Human Herpesvirus 6: Models of Viral Genome Release from the Telomere and Impacts on Human Health / M.L. Wood, N.G. Royle // Viruses. 2017. Vol. 9 (7). E184. doi: 10.3390/v9070184
- 10. Yalcin, S. Human herpesvirus 6 and human herpesvirus 7 infections in renaltransplant recipients and healthy adults in Turkey / S. Yalcin, T. Karpuzoglu, G. Suleymanlar, G. Mutlu, T. Mukai, T. Yamamoto, et al. //Archives of Virology. − 1994. − №136. − P. 183–190.
- 11. Yalcin, S. Prevalence of human herpesvirus 6 variants A and B in patients with chronic fatigue syndrome / S. Yalcin, H. Kuratsune, K. Yamaguchi, T. Kitani, K. Yamanishi // Microbiology and Immunology. − 1994. − №38. − P. 587–590.
- 12. Yoshikawa, T. Evaluation of active human herpesvirus 6 infection by reverse transcription-PCR / T. Yoshikawa, S. Akimoto, N. Nishimura, T. Ozaki, M. Ihira, M. Ohashi, M. Morooka, S. Suga, Y. Asano, M. Takemoto, Y. Nishiyama // Journal of Medical Virology. 2003. Vol. 70 (2). P. 267–272.