Генетические конструкции как источник получения рекомбинантного химозина

Статья в сборнике трудов конференции
DOI: 10.31483/r-112097
Open Access
VII Всероссийская научно-практическая конференция «Фундаментальные и прикладные исследования по приоритетным направлениям биоэкологии и биотехнологии»
Creative commons logo
Опубликовано в:
VII Всероссийская научно-практическая конференция «Фундаментальные и прикладные исследования по приоритетным направлениям биоэкологии и биотехнологии»
Автор:
Антонова Е. И. 1 , Аббязова А. Н. 1 , Фирсова Н. В. 1 , Ачилов А. Б. 1 , Викторов Д. А. 1 , Ленгесова Н. А. 1
Рубрика:
Молекулярная биология, генетика, микробиология
Страницы:
49-55
Получена: 28.05.2024

Рейтинг:
Статья просмотрена:
523 раз
Размещено в:
РИНЦ
1 Научно-исследовательский центр фундаментальных и прикладных проблем биоэкологии и биотехнологии ФГБОУ ВО «Ульяновский государственный педагогический университет им. И.Н. Ульянова»
Для цитирования:
Генетические конструкции как источник получения рекомбинантного химозина: сборник трудов конференции. / Е. И. Антонова, А. Н. Аббязова, Н. В. Фирсова [etc.] // Фундаментальные и прикладные исследования по приоритетным направлениям биоэкологии и биотехнологии : материалы VII Всерос. науч.-практич. конф. (Ульяновск, May 28, 2024) / editorial board: Е. И. Антонова [etc.] – Чебоксары: «Лару-тăру» («Среда») издательство çурчě, 2024. – pp. 49-55. – ISBN 978-5-907830-38-7. – DOI 10.31483/r-112097.

Аннотаци

В статье рассматриваются аспекты развития производства сыров на основе генно-инженерных аналогов химозина как альтернатива традиционному процессу получения сычужного химозина.

Финансовая поддержка

Номер гранта

Статья написана и доклад выполнен в рамках Дополнительного соглашения №073-03-2024-060/1 от 13.02.2024 к Соглашению о предоставлении субсидии из федерального бюджета на финансовое обеспечение выполнения государственного задания на оказание государственных услуг (выполнения работ) №073-03-2024-060 от 18.01.2024, заключенным между ФГБОУ ВО «УлГПУ им. И.Н. Ульянова» и Министерством просвещения Российской Федерации.

Список литературы

  1. 1. Музаев Д.М. Новые штаммы дрожжей Pichia pastoris – продуценты гетерологичных белков / Д.М. Музаев, А.М. Румянцев, Е.В. Самбук [и др.] // Экологическая генетика. – 2015. – №1. – EDN RTHLCE
  2. 2. Akishev Z., Aktayeva S., Kiribayeva A. [et al.] Obtaining of recombinant camel chymosin and testing its milk-clotting activity on cow’s, goat’s, ewes’, camel’s and mare’s milk. Biology 2022, 11, 1545. DOI 10.3390/biology11111545. EDN POXPTL
  3. 3. Akishev Z., Kiribayeva A., Mussakhmetov A. [et al.] Constitutive expression of Camelus bactrianus prochymosin B in Pichia pastoris. Heliyon. 2021, 7, e07137. DOI 10.1016/j.heliyon.2021.e07137. EDN WMGQNQ
  4. 4. Alihanoglu S., Ektiren D., Karaaslan M. Recombinant expression and characterization of Oryctolagus cuniculus chymosin in Komagataella phaffii (Pichia pastoris). Protein Expr. Purif. 2021, 183, 105874. DOI 10.1016/j.pep.2021.105874. EDN ZGLTBS
  5. 5. Balabova D.V., Belash E.A., Belenkaya S.V. [et al.] Biochemical properties of a promising milk-clotting enzyme, moose (Alces alces) recombinant chymosin. Foods 2023, 12, 3772. DOI 10.3390/foods12203772. EDN VIANDW
  6. 6. Balabova D.V., Belenkaya S.V., Volosnikova E.A. [et al.] Can recombinant tree shrew (Tupaia belangeri chinensis) chymosin coagulate cow (Bos taurus) milk? Appl. Biochem. Microbiol. 2022, 58, 763–772. DOI 10.1134/s0003683822060023. EDN GEMIZM
  7. 7. Balabova D.V., Rudometov A.P., Belenkaya S.V. [et al.] Biochemical and technological properties of moose (Alces alces) recombinant chymosin. Vavilovskii Zhurnal Genet. I Sel. (Vavilov. J. Genet. Breed.) 2022, 26, 240–249.
  8. 8. Bekele B., Hansen E.B., Eshetu M. [et al.] Effect of starter cultures on properties of soft white cheese made from camel (Camelus dromedarius) milk // J Dairy Sci. 2019. 102 (2). P. 1108–1115. DOI 10.3168/jds.2018-15084. EDN RFPKBD
  9. 9. Belenkaya S.V., Balabova D.V., Belov A.N. [et al.] Basic biochemical properties of recombinant chymosins (Review) // Applied biochemistry and microbiology. 2020. 56 (4). P. 315–326.
  10. 10. Belenkaya S.V., Bondar A.A., Kurgina T.A. [et al.] Characterization of the altai maral chymosin gene, production of a chymosin recombinant analog in the prokaryotic expression system, and analysis of its several biochemical properties. Biochemistry. 2020, 85. P. 781–791.
  11. 11. Belenkaya S.V., Chirkova V.Y., Sharlaeva E.A. [et al.] Parameters of enzymatic kinetics of recombinant chymosin of the Altai red deer (Cervus elaphus sibiricus) obtained in pro- and eukaryotic expression systems. Biotechnology 2022, 38, 11–16.
  12. 12. Belenkaya S.V., Elchaninov V.V., Shcherbakov D.N. Development of a producer of recombinant maral chymosin based on the yeast Kluyveromyces lactis. Biotechnology 2021, 37. P. 20–27.
  13. 13. Belenkaya S.V., Shcherbakov D.N., Balabova D.V. [et al.] Production of maral (Cervus elaphus sibiricus Severtzov) recombinant chymosin in the prokaryotic expression system and the study of the aggregate of its biochemical properties relevant for the cheese-making industry. Appl. Biochem. Microbiol. 2020, 56. P. 647–656. DOI 10.1134/S0003683820060034. EDN GZDDPE
  14. 14. Cardoza R.E., Gutirrez S., Ortega N. [et al.] Expression of a synthetic copy of the bovine chymosin gene in Aspergillus awamori from constitutive and pH-regulated promoters and secretion using two different pre-pro sequences. Biotechnol. Bioeng. 83 (2003). P. 249–259.
  15. 15. Fatma Ersöz, Mehmet İnan. Large-scale production of yak (Bos grunniens) chymosin A in Pichia pastoris. Protein Expr Purif. 2019:154. P. 126–133.
  16. 16. Jensen J.L., Jacobsen J., Moss M.L. [et al.] The function of the milk-clotting enzymes bovine and camel chymosin studied by a fluorescence resonance energy transfer assay. 2015.
  17. 17. Jiang X-P., Yin M.-L., Chen P., Yang Q. Constitutive expression, purification andcharacterization of bovine prochymosin in Pichia pastoris GS115. World J. Microbiol. Biotechnol. 28. 2012. P. 2087–2093. DOI 10.1007/s11274-012-1012-7. EDN RUQJNF
  18. 18. Harboe M., Broe M.L., Qvist K.B. The production, action and application of rennet and coagulants. In Technology of Cheesemaking; Law, B.A., Tamime, A.Y., Eds. Wiley-Blackwell: Hoboken, NJ, USA, 2010; Chapter 3; P. 98–129.
  19. 19. Holt C., Carver J.A., Ecroyd H., Thorn D.C. Invited review: Caseins and the casein micelle: Their biological functions, structures, and behavior in foods. J. Dairy Sci. 2013, 96. P. 6127–6146. DOI 10.3168/jds.2013-6831. EDN RJHQLJ
  20. 20. Kumar A., Grover S., Sharma J., Batish V.K., Chymosin and other milk coagulants: sources and biotechnological interventions, Crit. Rev. Biotechnol. 30 (2010) 243–258. DOI 10.3109/07388551.2010.483459. EDN OKQDSD
  21. 21. Liu W.-G., Wang Y.-P., Zhang Z.-J. [et al.] Generation and characterization of caprine chymosin in corn seed. Protein Expr. Purif. 2017, 135, 78–82.
  22. 22. Lopes-Marques, M.; Ruivo, R.; Fonseca, E. [et al.] Unusual loss of chymosin in mammalian lineages parallels neo-natal immune transfer strategies. Mol. Phylogenet. Evol. 2017, 116, 78–86. DOI 10.1016/j.ympev.2017.08.014. EDN YIZRJO
  23. 23. Macauley-Patrick S., Fazenda M.L., McNeil B., Harvey L.M. Heterologous protein production using the Pichia pastoris expression system, Yeast 22 (2005) 249–270.
  24. 24. Murashkin D.E., Belenkaya S.V., Bondar A.A. [et al.] Analysis of some biochemical properties of recombinant siberian roe Deer (Capreolus pygargus) Chymosin Obtained in the Mammalian Cell Culture (CHO-K1). Biochemistry (Mosc). 2023 Sep; 88 (9): 1284–1295. DOI 10.1134/s0006297923090080. EDN PMORRM
  25. 25. Noseda D.G., Blasco M., Ortiz G.E., Galvagno M.A. Cloning, expression and optimized production in a bioreactor of bovine chymosin B in Pichia (Komagataella) pastoris under AOX1 promoter. Protein Expression Purif. 92 (2013) 235–244.
  26. 26. Patra P., Das M., Kundu P., Ghosh A. Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts. Biotechnol. Adv. 2021, 47, 107695. DOI 10.1016/j.biotechadv.2021.107695. EDN BKKTJP
  27. 27. Rogelj I., Perko B., Francky A., Penca V., Purgenˇcar J. Recombinant Lamb Chymosin as an Alternative Coagulating Enzyme in Cheese Production. J. Dairy Sci. 2001, 84, 1020–1026.
  28. 28. Sakhtah H., Behler J., Ali-Reynolds A. [et al.] C.H. Novel Regulated Hybrid Promoter That Permits Autoinduction of Heterologous Protein Expression in Kluyveromyces lactis. Appl. Environ. Microbiol. 2019, 85, e00542–19.
  29. 29. Uniacke-Lowe T., Fox P.F. Chymosin, pepsins and other aspartyl proteinases: Structures, functions, catalytic mechanism and milk-clotting properties. In Cheese, 4th ed.; McSweeney, P.L.H., Cotter, P.D., Fox, P.F., Everett, D.W., Eds.; Elsevier Academic Press: Oxford, UK, 2017; pp. 69–113. DOI 10.1016/B978-0-12-417012-4.00004-1. EDN XOYMVA
  30. 30. Vallejo J.A., Ageitos J.M., Poza M., Villa T.G. Cloning and Expression of Buffalo Active Chymosin in Pichia pastoris. J. Agric. Food Chem. 2008, 56, 10606–10610. DOI 10.1021/jf802339e. EDN LOMBBF
  31. 31. Van den Dungen M.W., Boer R., Wilms L.C. [et al.] The safety of a Kluyveromyces lactis strain lineage for enzyme production. Regul. Toxicol. Pharmacol. 2021, 126, 105027.
  32. 32. Wang N., Wangb K.Y., Li G.Q. [et al.] Expression and characterization of camel chymosin in Pichia pastoris. Protein Expression and Purification 111 (2015) 75–81.

Комментарии(0)

При добавлении комментария укажите:
  • степень актуальности публикуемого материала;
  • общую оценку (оригинальность и актуальность темы, полнота, глубина, всесторонность раскрытия темы, логичность, связность, доказательность, структурная упорядоченность, характер и достоверность примеров, иллюстративного материала, убедительность выводов);
  • недостатки, недочеты;
  • вопросы и пожелания Автору.