- Main
- Conference
- Innovative approaches to management in economic, t...
- Using artificial intelligence to improve business...
Using artificial intelligence to improve business efficiency
Proceeding


- Published in:
- All-Russian scientific conference «Innovative approaches to management in economic, technical and legal systems»
- Author:
- Inna G. Iglinskaia 1
- Work direction:
- Информационные технологии в управлении бизнесом
- Pages:
- 268-271
- Received: 6 November 2024
- Rating:
- Article accesses:
- 306
- Published in:
- РИНЦ
1 Starooskol'skii filial FGAOU VO "Belgorodskii gosudarstvennyi natsional'nyi issledovatel'skii universitet"
- APA
For citation:
Iglinskaia I. G. (2025). Using artificial intelligence to improve business efficiency. Innovative approaches to management in economic, technical and legal systems, 268-271. Чебоксары: PH "Sreda".
- ВКонтакте
- РћРТвЂВВВВВВВВнокласснРСвЂВВВВВВВВРєРСвЂВВВВВВВВ
- РњРѕР№ Р В Р’В Р РЋРЎв„ўР В Р’В Р РЋРІР‚ВВВВВВВВРЎР‚
Abstract
The article examines the role of artificial intelligence (AI) in improving the efficiency of business processes. In the context of rapid technological progress, companies are faced with the need to adapt to new realities, and AI is becoming a key tool for achieving competitive advantages. The main areas of AI application are analyzed, including automation of routine tasks, improvement of customer service, forecasting consumer behavior and optimization of resource management. Special attention is paid to examples of successful AI implementation in various industries such as finance, retail and manufacturing. The challenges and risks associated with the integration of AI into business, including issues of ethics and data protection, are also discussed. The article emphasizes the importance of a strategic approach to the introduction of AI technologies, as well as the need to train personnel to work with new tools. In conclusion, conclusions are drawn about the prospects of using AI to in
Keywords
competitive advantages, machine learning, digital transformation, data analysis, personnel training, forecasting, Artificial intelligence (AI), data protection, business efficiency, process automation, customer service, resource optimization, business innovation, AI ethics, strategic implementation.
References
- 1. Буценко Е.В. Оптимизация управления проектами: моногрaфия / Е.В. Буценко; М-во науки и высш образования Рос. Федерации, Урал. гос. экон. ун-т. – Екатеринбург: Изд-во Урал. гос. экон. ун-та, 2023. – 247 с. EDN YXJINL
- 2. Гифт Н. Прагматичный ИИ. Машинное обучение и облачные технологии / Н. Гифт; пер. с англ. И. Пальти. – СПб.: Питер, 2019. – 300 с.
- 3. Дейвенпорт Т. Внедрение искусственного интеллекта в бизнес-практику: преимущества и сложности: учебник / Т. Дейвенпорт; пер. с англ. З. Мамедьянова. – М.: Сбербанк, 2019. – 250 с.
- 4. Кузнецов А.В. Искусственный интеллект и информационная безопасность общества: монография / А.В. Кузнецов, С.И. Самыгин, М.В. Радионов. – М.: РУСАЙНС, 2024. – 118 с.
Documents
Full text (RUS)
189.09KbLinks
Digest
https://phsreda.com/en/action/10655/infoExport citation
BibTex
.bib
Comments(0)