Identification of econometric models of simultaneous equations and control systems based on machine learning

Book Chapter
DOI: 10.31483/r-126913
Open Access
Published in:
Monograph «Effective development of the modern economy: problems and prospects»
Author:
Alina M. Minitaeva 1
Work direction:
Глава 12
Pages:
168-182
Received: 1 March 2025

Rating:
Article accesses:
107
1 FGBOU VO "Moskovskii gosudarstvennyi tekhnicheskii universitet im. N.E. Baumana"
For citation:

Abstract

The chapter proposes a method for analyzing economic systems based on the use of a model of simultaneous equations and machine learning. The architecture of a fully connected neural network capable of reflecting the structure of a discrete-time control system and allowing the identification of a system of simultaneous equations is considered. A method for training a neural network is proposed that allows estimating the coefficients of a set of simultaneous equations. A method for forecasting a multivariate time series based on the estimated structural parameters of the system using a perceptron is presented.

References

  1. 1. Salam R., Basuki P. Simultaneous Equation: The Case of Inflation & Rupiah Exchange Rate in Indonesia 2001–2022 // International journal of multidisciplinary research and analysis. 2023. Vol. 6. No. 12. P. 5531–5538. DOI 10.47191/ijmra/v6-i12–12
  2. 2. Warrener C., Silva F., Guimaraes L. Financial system and economic development: a study for emerging countries through a system of simultaneous equations // Internext. 2023. Vol. 18. No. 3. DOI 10.18568/internext.v18i3.741. EDN STSVXR
  3. 3. Yilanci V., Cutcu I., Araci S. The causality relationship between trade andenvironment in G7 countries: evidence from dynamic symmetric and asymmetric bootstrappanel causality tests // Mathematics. 2022. Vol. 10. No. 15. DOI 10.3390/math10152553. EDN WPWQOJ
  4. 4. Liu Y., Jin M., Zhao S., Qi G. How do volatile and non-volatile energy factors affect energy OFDI? evidence from simultaneous equation model // Front. Energy Res. 2024. Vol. 11. No. 1302374. P. 627–637. DOI 10.3389/fenrg.2023.1302374. EDN FAPUEY
  5. 5. Kheireddine H., Lacombe I., Jarboui A. The moderating effect of environmental performance on the relationship between sustainability assurance quality and firm value: a simultaneous equations approach // Benchmarking An International Journal. 2024. DOI 10.1108/BIJ-06–2022–0389. EDN CZEMHC
  6. 6. Garba M., Akanni S., Banjoko A., Oladele T. The nexus between foreign aid and foreign direct investment in Nigeria: simultaneous equations approach // Malaysian Journal of Computing. 2023. Vol. 8. No. 2. P. 1620–1638. DOI 10.24191/mjoc.v8i2.16635
  7. 7. Egger P., Prucha I. Refined GMM estimators for simultaneous equations models with network interactions // Empirical Economics. 2023. Vol. 64. No. 6. P. 2535–2542. DOI 10.1007/s00181–023–02408–8. EDN CKSOBA
  8. 8. Hadjiantoni S., Kontoghiorghes E. A recursive three-stage least squares method for large-scale systems of simultaneous equations // Linear Algebra and its Applications. 2018. Vol. 536. P. 210–227. DOI 10.1016/j.laa.2017.08.019
  9. 9. Hernandez-Sanjaime R., Gonzalez M., Lopez-Espın J. Multilevel simultaneous equation model: A novel specification and estimation approach // Journal of Computational and Applied Mathematics. 2020. Vol. 366. No. 112378. DOI 10.1016/j.cam.2019.112378. EDN VDJEXY
  10. 10. Bukhtoyarov V.V., Tynchenko V.S., Nelyub V.A., Masich I.S., Borodulin A.S., Gantimurov A.P. A Study on a Probabilistic Method for Designing Artificial Neural Networks for the Formation of Intelligent Technology Assemblies with High Variability // Electronics (Switzerland). 2023. Vol. 12. No. 1. P. 215. DOI 10.3390/electronics12010215. EDN XTUCKB
  11. 11. Минитаева А.М. Обзор методов вычисления коэффициентов авторегрессии для автокорреляционных нелинейных нестационарных процессов / А.М. Минитаева, И.О. Михнюк // Информационно-технологический вестник. – 2024. – №4 (42). – С. 30–41. – EDN BDUUJG.
  12. 12. Minitaeva A.M. Unbiased Estimation Method for Coefficients of Simultaneous Equations with Stochasticity of Exogenous Variables, Proceedings of the 2024 6th International Conference on Big-data Service and Intelligent Computation BDSIC 2024, May 29–31, 2024, Hong Kong, Hong Kong. ACM, New York, NY, USA, 9 Pages. 2024, DOI 10.1145/3686540.3686554
  13. 13. Minitaeva A. Analysis of the Multi-Criteria Decision-Making Problem Under Conditions of Heterogeneous Interval Uncertainty, Proceedings – 2022 4th International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency, SUMMA 2022, 2022, DOI 10.1109/SUMMA57301.2022.9974092
  14. 14. Mikhailov V.G., Mezhennaya N.M., Volgin, A.V. On the asymptotic normality conditions for the number of repetitions in a stationary random sequence // Discrete Mathematics and Applications. 2022. Vol. 32. No. 6. P. 397–407. DOI 10.1515/dma-2022-0034. EDN SGIHQC
  15. 15. Fetisov D.A. On Linearization of Single-Input Nonlinear Control Systems Based on Time Scaling and a One-Fold Prolongation // Differential Equations. 2023. Vol. 59. No. 1. P. 103–118. DOI 10.1134/s0012266123010081. EDN CJYLFJ
  16. 16. Chetverikov V.N. Orbital decompositions and integrable pseudosymmetries of control systems // Automatica. 2022. Vol. 139. DOI 10.1016/j.automatica.2022.110189. EDN NYVULO
  17. 17. Минитаева А.М. Системный анализ и разработка методики моделирования нелинейных нестационарных процессов в системе поддержки принятия решений / А.М. Минитаева, С.В. Шайтура // Информационно-технологический вестник. – 2023. – №3 (37). – С. 54–64. – EDN ACWQAM.
  18. 18. Минитаева А.М. Новый оператор тензорного произведения и анализ нелинейных систем с полиномиальными функциями пространства состояний / А.М. Минитаева // Информационно-технологический вестник. – 2024. – №3 (41). – С. 3–14. – EDN AAECDU.
  19. 19. Stepanova M., Eremin O., Proletarsky A. Self-regulation Management in IoT Infrastructure Using Machine Learning // Lecture Notes in Electrical Engineering. 2022. Vol. 832. P. 3–15. DOI 10.1007/978-981-16-8248-3_1. EDN HKBJPZ
  20. 20. Шайхутдинов А.А. Применение методов имитационного моделирования в спиральном жизненном цикле программных продуктов для улучшения продуктовых метрик на примере онлайн сервиса подбора репетиторов / А.А. Шайхутдинов // Искусственный интеллект в автоматизированных системах управления и обработки данных: Сборник статей II Всероссийской научной конференции: в 5 томах (Москва, 27–28 апреля 2023 г.). – М.: КДУ, Добросвет, 2023. – С. 237–244. – EDN UQQTNL.
  21. 21. Шайхутдинов А.А. Расширенные комплексные матрица метрического тензора и пространство Минковского для систем любой природы / А.А. Шайхутдинов // Информационно-технологический вестник. – 2024. – №4 (42). – С. 42–65. – EDN EQBRHJ.
  22. 22. Шайхутдинов А.А. Методы и аспекты прогнозного моделирования нелинейных нестационарных процессов / А.А. Шайхутдинов // Информационно-технологический вестник. – 2024. – Т. 40. №2. – С. 66–76. EDN THMLET.

Comments(0)

When adding a comment stipulate:
  • the relevance of the published material;
  • general estimation (originality and relevance of the topic, completeness, depth, comprehensiveness of topic disclosure, consistency, coherence, evidence, structural ordering, nature and the accuracy of the examples, illustrative material, the credibility of the conclusions;
  • disadvantages, shortcomings;
  • questions and wishes to author.