- Main
- Monograph
- Effective development of the modern economy: probl...
- Identification of econometric models of simultaneo...
Identification of econometric models of simultaneous equations and control systems based on machine learning
Book Chapter
- Published in:
- Monograph «Effective development of the modern economy: problems and prospects»
- Author:
- Alina M. Minitaeva 1
- Work direction:
- Глава 12
- Pages:
- 168-182
- Received: 1 March 2025
- Rating:
- Article accesses:
- 107
1 FGBOU VO "Moskovskii gosudarstvennyi tekhnicheskii universitet im. N.E. Baumana"
- ВКонтакте
- РћРТвЂВВВВВВВВнокласснРСвЂВВВВВВВВРєРСвЂВВВВВВВВ
- РњРѕР№ Р В Р’В Р РЋРЎв„ўР В Р’В Р РЋРІР‚ВВВВВВВВРЎР‚
DOI: 10.31483/r-126913
Abstract
The chapter proposes a method for analyzing economic systems based on the use of a model of simultaneous equations and machine learning. The architecture of a fully connected neural network capable of reflecting the structure of a discrete-time control system and allowing the identification of a system of simultaneous equations is considered. A method for training a neural network is proposed that allows estimating the coefficients of a set of simultaneous equations. A method for forecasting a multivariate time series based on the estimated structural parameters of the system using a perceptron is presented.
Keywords
References
- 1. Salam R., Basuki P. Simultaneous Equation: The Case of Inflation & Rupiah Exchange Rate in Indonesia 2001–2022 // International journal of multidisciplinary research and analysis. 2023. Vol. 6. No. 12. P. 5531–5538. DOI 10.47191/ijmra/v6-i12–12
- 2. Warrener C., Silva F., Guimaraes L. Financial system and economic development: a study for emerging countries through a system of simultaneous equations // Internext. 2023. Vol. 18. No. 3. DOI 10.18568/internext.v18i3.741. EDN STSVXR
- 3. Yilanci V., Cutcu I., Araci S. The causality relationship between trade andenvironment in G7 countries: evidence from dynamic symmetric and asymmetric bootstrappanel causality tests // Mathematics. 2022. Vol. 10. No. 15. DOI 10.3390/math10152553. EDN WPWQOJ
- 4. Liu Y., Jin M., Zhao S., Qi G. How do volatile and non-volatile energy factors affect energy OFDI? evidence from simultaneous equation model // Front. Energy Res. 2024. Vol. 11. No. 1302374. P. 627–637. DOI 10.3389/fenrg.2023.1302374. EDN FAPUEY
- 5. Kheireddine H., Lacombe I., Jarboui A. The moderating effect of environmental performance on the relationship between sustainability assurance quality and firm value: a simultaneous equations approach // Benchmarking An International Journal. 2024. DOI 10.1108/BIJ-06–2022–0389. EDN CZEMHC
- 6. Garba M., Akanni S., Banjoko A., Oladele T. The nexus between foreign aid and foreign direct investment in Nigeria: simultaneous equations approach // Malaysian Journal of Computing. 2023. Vol. 8. No. 2. P. 1620–1638. DOI 10.24191/mjoc.v8i2.16635
- 7. Egger P., Prucha I. Refined GMM estimators for simultaneous equations models with network interactions // Empirical Economics. 2023. Vol. 64. No. 6. P. 2535–2542. DOI 10.1007/s00181–023–02408–8. EDN CKSOBA
- 8. Hadjiantoni S., Kontoghiorghes E. A recursive three-stage least squares method for large-scale systems of simultaneous equations // Linear Algebra and its Applications. 2018. Vol. 536. P. 210–227. DOI 10.1016/j.laa.2017.08.019
- 9. Hernandez-Sanjaime R., Gonzalez M., Lopez-Espın J. Multilevel simultaneous equation model: A novel specification and estimation approach // Journal of Computational and Applied Mathematics. 2020. Vol. 366. No. 112378. DOI 10.1016/j.cam.2019.112378. EDN VDJEXY
- 10. Bukhtoyarov V.V., Tynchenko V.S., Nelyub V.A., Masich I.S., Borodulin A.S., Gantimurov A.P. A Study on a Probabilistic Method for Designing Artificial Neural Networks for the Formation of Intelligent Technology Assemblies with High Variability // Electronics (Switzerland). 2023. Vol. 12. No. 1. P. 215. DOI 10.3390/electronics12010215. EDN XTUCKB
- 11. Минитаева А.М. Обзор методов вычисления коэффициентов авторегрессии для автокорреляционных нелинейных нестационарных процессов / А.М. Минитаева, И.О. Михнюк // Информационно-технологический вестник. – 2024. – №4 (42). – С. 30–41. – EDN BDUUJG.
- 12. Minitaeva A.M. Unbiased Estimation Method for Coefficients of Simultaneous Equations with Stochasticity of Exogenous Variables, Proceedings of the 2024 6th International Conference on Big-data Service and Intelligent Computation BDSIC 2024, May 29–31, 2024, Hong Kong, Hong Kong. ACM, New York, NY, USA, 9 Pages. 2024, DOI 10.1145/3686540.3686554
- 13. Minitaeva A. Analysis of the Multi-Criteria Decision-Making Problem Under Conditions of Heterogeneous Interval Uncertainty, Proceedings – 2022 4th International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency, SUMMA 2022, 2022, DOI 10.1109/SUMMA57301.2022.9974092
- 14. Mikhailov V.G., Mezhennaya N.M., Volgin, A.V. On the asymptotic normality conditions for the number of repetitions in a stationary random sequence // Discrete Mathematics and Applications. 2022. Vol. 32. No. 6. P. 397–407. DOI 10.1515/dma-2022-0034. EDN SGIHQC
- 15. Fetisov D.A. On Linearization of Single-Input Nonlinear Control Systems Based on Time Scaling and a One-Fold Prolongation // Differential Equations. 2023. Vol. 59. No. 1. P. 103–118. DOI 10.1134/s0012266123010081. EDN CJYLFJ
- 16. Chetverikov V.N. Orbital decompositions and integrable pseudosymmetries of control systems // Automatica. 2022. Vol. 139. DOI 10.1016/j.automatica.2022.110189. EDN NYVULO
- 17. Минитаева А.М. Системный анализ и разработка методики моделирования нелинейных нестационарных процессов в системе поддержки принятия решений / А.М. Минитаева, С.В. Шайтура // Информационно-технологический вестник. – 2023. – №3 (37). – С. 54–64. – EDN ACWQAM.
- 18. Минитаева А.М. Новый оператор тензорного произведения и анализ нелинейных систем с полиномиальными функциями пространства состояний / А.М. Минитаева // Информационно-технологический вестник. – 2024. – №3 (41). – С. 3–14. – EDN AAECDU.
- 19. Stepanova M., Eremin O., Proletarsky A. Self-regulation Management in IoT Infrastructure Using Machine Learning // Lecture Notes in Electrical Engineering. 2022. Vol. 832. P. 3–15. DOI 10.1007/978-981-16-8248-3_1. EDN HKBJPZ
- 20. Шайхутдинов А.А. Применение методов имитационного моделирования в спиральном жизненном цикле программных продуктов для улучшения продуктовых метрик на примере онлайн сервиса подбора репетиторов / А.А. Шайхутдинов // Искусственный интеллект в автоматизированных системах управления и обработки данных: Сборник статей II Всероссийской научной конференции: в 5 томах (Москва, 27–28 апреля 2023 г.). – М.: КДУ, Добросвет, 2023. – С. 237–244. – EDN UQQTNL.
- 21. Шайхутдинов А.А. Расширенные комплексные матрица метрического тензора и пространство Минковского для систем любой природы / А.А. Шайхутдинов // Информационно-технологический вестник. – 2024. – №4 (42). – С. 42–65. – EDN EQBRHJ.
- 22. Шайхутдинов А.А. Методы и аспекты прогнозного моделирования нелинейных нестационарных процессов / А.А. Шайхутдинов // Информационно-технологический вестник. – 2024. – Т. 40. №2. – С. 66–76. EDN THMLET.
Documents
Full text (RUS)
644.48KbLinks
Digest
https://phsreda.com/en/action/10713/infoExport citation
BibTex
.bib
Comments(0)